Sztuczna inteligencja rozpoznaje przyszłe hity

Naukowcy połączyli uczenie maszynowe z badaniami mózgu i stworzyli system, który wśród nowych piosenek znajduje przyszłe przeboje. Serwisy streamingowe będą mogły natychmiast określić przyszłe hity i proponować je ludziom - twierdzą badacze.

Codziennie powstają tysiące piosenek, więc stacje radiowe czy serwisy online mają nie lada kłopot z wybieraniem tych, które mogą wpaść w ucho słuchaczom. Niestety, mimo zaangażowania ekspertów od muzyki i komputerów, przyszłe hity dotąd znajdowano tylko z 50 proc. precyzją - przypominają naukowcy z Claremont Graduate University.

Nowy system ich autorstwa osiąga tymczasem trafność na poziomie 97 proc. Badacze wykorzystali w nim sztuczną inteligencję oraz dane uzyskane bezpośrednio z obserwacji ludzkich mózgów. "Zastosowanie uczenia maszynowego do analizy danych neurofizjologicznych pozwala nam niemal doskonale identyfikować nowe przeboje" - powiedział prof. Paul Zak, główny autor badania opublikowanego w czasopiśmie "Frontiers in Artificial Intelligence".

"Aktywność neuronalna 33 ochotników może powiedzieć, czy miliony innych osób będą słuchać nowych utworów. Nigdy wcześniej nie osiągnięto takiego poziomu dokładności" - stwierdził.

Uczestnicy badania byli wyposażeni w monitorujące mózg sensory i słuchali zestawu tylko 24 piosenek. Zostali też zapytani o swoje preferencje i wybrane dane demograficzne. "Zebrane przez nas sygnały mózgowe odzwierciedlają aktywność sieci mózgowej związanej z nastrojem i poziomem energii" - wyjaśnił prof. Zak.

Opisane podejście naukowcy określają jako neuroprognozowanie. Aktywność mózgu niewielkiej grupy ludzi pozwala w nim przewidzieć zachowanie dużej populacji. Jednak zwykła, wspomagana komputerowo analiza statystyczna pozwalała uzyskać przewidywania o dokładności zaledwie 69 proc. Dopiero techniki uczenia maszynowego podniosły skuteczność do poziomu 97 proc.

Nawet gdy naukowcy zastosowali tę metodę tylko do pierwszej minuty każdej piosenki, model przewidywał hity z precyzją 82 proc.

"Oznacza to, że serwisy streamingowe mogą z łatwością identyfikować nowe piosenki, które prawdopodobnie staną się hitami na listach odtwarzania. Oznacza to, że praca tych serwisów stanie się łatwiejsza, a słuchaczom dostarczą one więcej satysfakcji" - uznał prof. Zak.

Jego zdaniem zastosowane podejście może jeszcze zostać spersonalizowane. "W przyszłości, jeśli przenośne czujniki, takie jak te użyte w badaniu, staną się powszechne, odpowiednie materiały mogłyby być wysyłane odbiorcom na podstawie ich własnej neurofizjologii. Zamiast setek możliwości, klienci mogliby otrzymać tylko dwie lub trzy opcje, co ułatwiłoby i przyspieszyło wybór muzyki" - wyjaśnił badacz.

Więcej informacji w artykule źródłowym (https://www.frontiersin.org/articles/10.3389/frai.2023.1154663/full).

« 1 »